ERRATA: COMPACT QUANTUM ERGODIC SYSTEMS

REILJI TOMATSU

When —1 < ¢ < 0, our classification lists of right coideals of C(SU,(2)) [T,
p.2, Theorem 7.1, 8.1] are incorrect. Several results have to be corrected.

1. CORRECTION OF [T, Section 7]

1.1. A, Dy, A/, case. A critical error is the discussion of [T, p.64]. Recall a right
coideal C*(a,b) introduced in [T, p.62], where a := \/qox + v and b := |/qou + ¥y
with go := —q > 0. We labelled it by Dy, but correctly, it is of type A/ .

Theorem 1.1. Let —1 < q < 0. A right coideal corresponding to the 1st vertex
of the A’_-graph in [T, p.82, Fig.15.] is conjugate to C*(a,b) by BL.

Proof. Let A := C*(a,b). Then A is linearly spanned by a*b® with k,¢ non-
negative integers. Using U, (su(2))’s action, we can show that the space of highest
weight vectors for each half spin is one-dimensional. This is only the case when
A corresponds to the vertex with a loop in the A’_-graph. Their uniqueness up
to the conjugation by 3 is discussed in [T, p.62]. O

So, we must again study whether D; and A/ types are allowed or not.

Lemma 1.2. Let —1 < q < 0. A right coideal with 7y jo-multiplicity 1 is conjugate
to C*(a,b) by BE. In particular, types Dy and A!, (3 <n < 0o) do not appear.

Proof. Let A be such a right coideal. We may and do assume that C*(a,b) C A
using Y. Recall the product map ¥ defined in [T, p.34]. By direct computation,
we can show the following claim.

Claim 1. Let v € (1/2)Zy and n := Y ,.; dywy. Then ¥, ;,((a,b),n) = 0 if
and only if d; satisfies the following recurrence formula:

(1) gy 1= @ Ay = 1 - ¢ Vd,

Its exact solution is given by the following:

) (=3v4t—2)/2 | 2V 1/2
d, = (_1)(u+t)(5u+t—1)/2 q(()wr )(=3v+t-2)/ d_,.
v+t q?

On the conjugation of 7, we have Tn =37, ., e;w} and e, = (—1) 6Dt
For n € N, we have

-1/2
/94 n n
a" _th n/2 t,—n/2, ft = Ot/2+ /4|: :| |: :| )

= t+n/2],[t+n/2] .

Thus we have three linearly independent 7,-eigenvectors n, T'n and fArw?.
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Now assume that A is of type D;. Then its spectral pattern is like:
Wo@ﬂ'l/g@ﬂ'l@Qﬂ'g/g@'“ . (11)

Applying the above claim to v = 3/2, we get a contradiction.
If A is a right coideal corresponding to the end vertex of the Al -graph with
3 < n < oo, then its spectral pattern corresponding to the end vertex is like:

ToDmT D DT DTg2D - D T30 D 2Mp_1/0 D 3m, -+ . (1.2)
So, putting ¥ = n — 1/2 in the above, we get a contradiction again. 0

By [T, Proposition 4.22], there really exists a right coideal corresponding to
each vertex in the A’ _-graph in [T, p.82 Fig.15]. In this note, we will say that a
right coideal is of type A; , when it is of type A;, and corresponding to the k-th
vertex, which is verified by computing the spectral multiplicities.

Set m := k — 1/2 and define the following m,,-eigenvector:

= /) “+1 w,".

m,+ —(m+t)(2m—2t+1)/2 / .m—t . Nt 2m 1/2 m
"= ( (—iy™")
telm

q2
Theorem 1.3. A right coideal of type AL, is conjugate to C*(¢F1/2%) by g~
Proof. Let A be such a right coideal. Then its spectral pattern is:

@ Wg@ @ 7Tk_1/2+g. (13)

€750 €750

Put m := k — 1/2. Since the m-multiplicity of A equals 1, we may assume that
&} belongs to A by using 8%, where £} is the m-eigenvector defined in [T, p.55].
Then a m,-eigenvector of A, n := 3, ., dyw}" satisfies the recurrence formula
given in [T, Lemma 7.4]. Then as in the discussion given in [T, p.54], we can
deduce 0 < A\g < 1.

When 0 < A\g < 1, we can solve the equation by using T as in [T, p.57|. Indeed
its (unique) solution is Ag = (g™ — ¢) (g " " + a0 ™) V23 (gg ™ +q¢~ ) "V/2, and
n is a scalar multiple of (™. Hence B := C*({"™*) C A. Comparing (1.3) with
other spectral patterns, we see B must be of type A/_,, and A = B.

Next suppose that A\g = 1. Then n = aw™, + pw]’ for some o, € C.
Since the m,,-eigenvector space is one-dimensional, we can deduce that n™ =
qz)n/zw’fm + qo_m/zwz by using Tn™ and a conjugation by #L. Then (n™ )* =
(qr2a2m 4 g™ P22 = gmatm 4 (1 — ¢dm®)a?m?m 4 gt that is linearly
independent from (w{)*™ = (1 + ¢2)™(zv)?™. This contradicts (1.3) at m,,. O

The discussion about the types T, D,, (odd n > 3) in [T, p.56-59] is correctly
working. The following result corrects [T, Theorem 7.1].

Theorem 1.4. Let —1 < g < 0. Then the possible types of right coideals of
C(SU-1(2)) are one of 1,T,, (n > 2), T, SU(2), D%, and AL, (k > 1) listed in [T,
p.79-82]. A right coideal of type T is one of the quantum spheres. Otherwise,
they are unique up to conjugation by BX. In particular, a type Al Tight coideal

is conjugate to C*(CF=Y/2+) by BL.



2. CORRECTION OF [T, Section §]

We next study when ¢ = —1.

2.1. D, case. Theorem 1.1 shows a := x 4+ v and b := u + y generate a right
coideal of type A7 ;.

Theorem 2.1. Let A C C(SU_1(2)) be a right coideal of type Dy. Then A is
equal to C*(a, b, (3/?) up to conjugation by B~, where

¢ = w?i/;/Q - \/§wi/12/2 - @wi’fg + wgg
This algebra indeed coincides with C(D1\SU_1(2))

Proof. Note that such A really exists because of the existence of the subgroup D,
of SU_1(2). By (1.1), the linear operator Wy 5((a,b),-) from the m3/,-eigenvector
space of A into the m; p-eigenvector space of A has one-dimensional kernel that
is spanned by ¢*2 by Claim 1 in Lemma 1.2 with ¢y = 1. So, A must contain
B := C*(a,b,(*?) that is never of type A’ by (1.2) and 3 < n < oco. Hence B is
of type Dy and A = B.

Next we check that B = C(D;\SU_1(2)). Let Dy := {e, g} = Z,. We use the
following embedding D; into SU_1(2): z(g) = 0 = y(g), u(g) = 1 = v(g). It is
straightforward to check that a,b, CE/Q are belonging to C(D;\SU_1(2)). O

2.2. Al case. Let A be a right coideal of type A/_;. Applying the discussion
preceding [T, Lemma 8.3] to m := k—1/2 (see (1.3)), we can show a m-eigenvector
is obtained by w{ or £7/2™/2 .= w! | 4+ w! though its definition here is slightly
different from the one in [T, Lemma 8.2]. If w{ belongs to A, a m,,-eigenvector is a
linear combination of w™ and w™. By using A and the conjugation T', we may
assume that w™, + w}' belongs to A, but C*(w™,, + w) is C(Da,,\SU-1(2))
(see [T, p.75]), and this is a contradiction. Hence £™27/2 belongs to A, and by
[T, Lemma 8.3] with x = 7/2, a m,,-eigenvector is a linear combination of

T 2m 1/2 T 2m 1/2
nm::sz_ {m—t] wy', N"i= Z(—z)m_ {m—t} w)".

t€lm telm

By direct computation, we have the following lemma.
Lemma 2.2. One has
W (€722 ™) = V20", W (€7 M) = —V2in™.

Hence to get the multiplicity 1 at the spin m, the eigenvector must be a scalar
multiple of n™ + ™. Let us prepare the following vectors:

= i, = =i, v (1/2)Zs.
Then we can prove the following lemmas.

Lemma 2.3. For all v € (1/2)Zsg, one has BF (V) = £i- 2T,
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Lemma 2.4. One has

TCV’i o Z.izygy’:F ifv e ZZ()?
N Z'—2y<1/7:|: ’Lf Ve 1/2 + ZZO'

Lemma 2.5. For all v € (1/2)Z>,, one has
\I]V*I/z((cu b)’ C%_) = Oa \Ijzz+1/2<(a7 b)v CM_) - _Z.CV+1/27+.

Denote by X the linear span of ¢/ = for all ¢ € I,,. The above lemmas imply
that the following useful formulae:

Xr oif 7
(XEy =0 LY E (2.1)
Xl:/t 1fVE]./2+ZZQ,

/67,L(Xlit) :X:Fa X;'_/QXI/_:X—"_

v v41/2 for all v € (1/2)2:20 (22)

v—1/2,—

Also we have ¢F = i(x + U)C,Z,H/g ;

and by Lemma 2.5,

(1 —1)[(z +v)(z —v)]” if v € Z>o,

- {i2”(1 — D[z +v)(x— )]V (x+v) ifvel)24 Zsg (2:3)

Theorem 2.6. The right coideal of type Al_, is conjugate to C*(CF=1/2%) by BE.

Proof. Let A be a right coideal of type A/, which really exists. By Lemma

2.3, we may assume A contains C*(¢*~1/2%). Then C*(¢*~1/2%) must be of type
A and A = CH(¢h=1/24), 0

00,k

Fix m € 1/2+Zxq. For v € 1/2+Z>q, we will introduce the 7,-eigenvector £+
whose highest weight vector fi’f equals (2% + v2)”_mCT;ni. Note that &% belong
to C*(¢™*) and they densely span it for v > m. Recall £™/2™/2 = w! | + w! in
what follows.

Lemma 2.7. For any { € Z>1, one has a non-zero cil € C such that
\Ijm+£_1<§7r/2,7r/2’ gm-&-ﬁ,:l:) — Ci ng-ﬁ-é—l,ﬁ:'

Proof. By Lemma 2.3, it suffices to show the statement for £+, Suppose that
we would have W, ,_1(£™/2™/2 ¢m+b+) = ( for some £ > 1. Set v := m + /.
Then ¢ is a linear combination of 7* and 7* by [T, Lemma 8.3]. Since &™/%7/2
and £” belong to C*(¢"™™") and its m,-multiplicity equals 1, we see " = ¢+
or & = ¢(”~ for some ¢ € C by Lemma 2.2. If & = ¢(*™", by using (2.3) and
changing ¢, we have

(@ +0*) (& + v)(z = o))" (2 +v) = e|(z + v) (@ — )] (@ + v).
Applying the counit, we get ¢ = 1. Put r := m — 1/2. Multiplying = + v from
the right, we get

(2% + ) (2 4 v)(z — v)]’"4: (2% + o)) [(x + v)(z — v)]" .



Using the map v, defined in [T, p.31] with g = r**(6), we obtain

1 —sinf 0 )

V(2 +0%) = c0s20, vy((x+v)(z—v)) =1—sinfos = ( 0 1+sind

Hence the above equality shows cos‘1(20)(1 — sinf)” = cos20(1 — sin )"+, If
we put 6 = 37/2, we get (—1)F! = —2¢, that is, £ = 0. This is a contradiction.
If & = ¢¢”~, by Lemma 2.3, (2.3) and changing ¢, then we have
(2% + v (z 4+ v)(z — )] (z +v) = c[(z — v)(z + )]z — ).
Hence ¢ = 1, and multiplying = 4+ v from the right, we have
(2% + o) (z +v)(z — )] = [(z —v)(z 4+ v)] T

Since v, ((x — v)(z +v)) = 1 + sin fo3, we get cos'(20)(1 — sin )" = cos 20(1 +
sin §)" L. Put § = 37/2 and we get (—1)“12" = 0, a contradiction.
Hence U, 1 (£7/2™/2 ¢m+t) is a non-zero m, ¢ i-eigenvector of C*(¢™7).

Since its 7, ,_1-eigenvector space is one-dimensional, that is a scalar multiple of
§m+€71,+ O

2.3. A, (¢ > 3) case.

Lemma 2.8. One has the following statements:
(1) If k € 1/2 +Z20 and { € (1/2)Z20, then X+Xg_ = le_+€’.
(2) Ifk€1/2+Z2[) andeZzo, thenXZ”X* X+€ G’I’LdX X_ Xk_—M

Proof. (1). By (2.1), we have
Xy = X Xiayn = XaBiXi 1 n) = XpBi(Xn X 1) = X{08i(X ) Xy

This implies X" = (X 1 QﬁZ(Xf_/QDk 1/2X1+/2

1/2 Bi(X 1/2>>k 1/2X1+/2X_ (X 1/2@( 1/2))k 1/2Xe++1/2
1/2Mi 1/2)>k 3/2X1+/2 (XJr X,
1/

Hence
XXy =(X
= (X}, 1/2 é+1/2)
= (X D)) X B(X )
— (X X1/2))k 3/2 x+ X
1/2)

1/2 i 1/2

k—3/2 v+
) /Xe+3/2

Bi(X
2(
Bi(
— (X} ,B(X

We can inductively show that this equals to X, e
(2). Use (2.1) and (2.2). O

Lemma 2.9. Let m,n € 1/2+Z>o and m < n. One has the following equalities:
(1) (XIX)XE =X}

Z(m—&—n)—l—m’
(2) (XEX) = XZern) In particular, (X;},,)" = XZern)‘
(3) (Xnant)ZXi - Xf_(m+n)+n7.
(4) (Xy X)) = Xy



Proof. (1).  The previous lemma implies (X} X)X} = (X;},,)X, and
XoinXoh = Xop i since m +n € Z. Similarly, (X5 ) X = X000 e
(2). First, we have
X Xy X = X (X0 X0 )" = X (X )" = X0 X = Xon g
Since 2m +n € 1/2 + Zso, (X2 X)) = Xopin Xy j X;L(m+n).
- - —ye-1
Next if (X7 X, )t X(E Dmny then (Xp X)X = X(—Zfl)(m%»n)er’ and
(X X)) = X}, - By induction, we are done.
(3), (4). Use (2.2) in (1) and (2). [

Set C= := C*(XZE) = C*(¢"™*) for m € (1/2)Z>o. When m € 1/2 + Zsg, we
have shown C% is of type A’ m+1/2 0 Theorem 2.6. Thus if we put QQ := C’(SELO),
then C% = Q4+ QX= = Q+ XZQ. It is useful to note QX* = XEQ, that is, we
can treat () as a “coefficient algebra”” in what follows.

Lemma 2.10. Let A, := C*(("™T, (7)) = CH(XF, X)) for m,n € 1/2 + Zx

and m <n. If 1/2 <m < n, then A, is of type Am+nm+1/2

Proof. Let us first assume m < n. Since X X
closure of
Q+ Y QUXIX) X+ QIXaXD)" + QXL X0 + QX X)Xy,

EGZZO

X, X, CQ, A, is the norm

which is, by the previous lemma, simply written as follows:
+
Q + Z QX L(m4n)+ + QX £L(m4n) Q E(m+n Q Z(m—i—n
ZGZZO

Hence A,,,, (m < n) is the norm closure of

cr (XTJrrH-n? 7;+n Z C p(m+n)+ + Co p(m~+n)+n’ (24)
PEZL>0
because Xy, 1 = (Xp4,)" by Lemma 2.9 (2). Note that (X, ,)* = X; 40

Claim 2. For p € Z»y, C*(X,[, X,7) contains @, and is of type Ty,
Proof of Claim. The map v, introduced in [T, Proof of Proposition 8. 11] satisfies

ol ) = VE T @ (P + Y. pyla® = o) = —iVE Ton o (74— 7)),
where nP* and 7P° are the m,-eigenvectors defined in [T, p.67]. Take a char-
acter C(03)* — C, we obtain an SU_(2)-isomorphism from C*(w”,, w?) onto
C*(n’i’g,ﬁ’i’g). Since 7P = e™™/2BE (%) and nP = ™ /2BL_ (AP0), we get an
SU_1(2)-isomorphism from C’*(w_p,'wp) = C(T2,\SU_1(2)) onto C*(X,7, X 7).

Since p, (2% + v?) = 1 ® (2 + v?), the isomorphism maps @ onto itself. O

So, if m < n, then its spectral pattern is like:

D a+2k/mrnh)me P mene--

keZz() m§k§n717k61/2+220
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Since m > 1/2, A, is not of type Dy, and this corresponds to the (m + 1/2)-th
vertex of the A7 . -graph. O

We have proved the existence of a right coideal of type A, for any ¢ > 3 and
k < ¢/2. However, the above C*(¢"",(™~) when m < n does not realize a right
coideal corresponding to the middle vertex of each Aj-graph for odd ¢ > 3. Let us
compute the spectral pattern of A,,,,. Recall the spectral pattern of C;—L(m tn)4m
in (2.4) with m = n is given by

@ T D @ T(2p+1)m+k-

k‘eZZO keZZO

From (2.4), for all v € 1/2 + Zs¢ with 2p+ 1)m < v < (2p + 3)m, the 7,-
eigenvector space of A,,,, comes from the linear span of m,-eigenvector spaces of
C;tm forq=1,3,...,2p+1, which are all one-dimensional. We will prove they are
linearly independent. Let us take a non-zero ,-eigenvector vg’i of C;tm. Suppose
that we have
Z agvy T +a vy =0 (2.5)
q=1,3,....2p+1

for some af € C. We have proved W,,_1(§™/2™/2 yh*) = ¢, vb~1* for some non-
zero cq,, for all > gm in Lemma 2.7. We successively operate the linear maps
\I/M_l(fﬂ/z’rﬂ, Jwith g = v,v—1,...,m+1, and we obtain o] (™" +c"a; (™™ =
0 for some non-zero ¢, ¢’ € C. Thus of = 0 = oy . Similarly, all o equal 0.

Thus the right coideal C*({™ ", (™~ ) = C*(n™,n™) has the exactly same spec-
tral pattern as that of type Ts,,, that is,

P (1 +2s/2mh)m @ €D 2((2s +2m + 1) /Am]mep1 0.

SEZZO SEZZO

Theorem 2.11. Let A be a right coideal of type Ay, with 3 < ¢ < oo and
k <{/2+1/2. Then the following statements hold:

(1) If k < £/2, then A is conjugate to C*(CF=1/2+ (F=F+1/2=) by BE;

(2) If ¢ is odd and k = £/2+1/2, then A is conjugate to C*(n*/?,7*/?) by B*.

Proof. (1). Put m := k—1/2 and n := ¢ —k+1/2. Since the vertex is not sitting
at the central position, the multiplicities of 7y, m,, are equal to 1 and that of =,
is 2. By the same discussion as that of the beginning of the subsection 2.2, a
mi-eigenvector is a scalar multiple of w{ or €™27/2. If w} would belong to A,
then we may assume that A has a m,-eigenvector w™, + w].. However, they
satisfy W, (wj, w ) = Fw, 5 and w™,  — w™ also belong to A, which shows
that the m,,-multiplicity is greater than 1, and this is a contradiction.

Thus the 7 -eigenspace generates the Podles sphere C(S%, ) = C*(£™/2™/%),
and we may assume that the m,,-eigenvector (" belongs to A as in the subsection
2.2. By [T, Lemma 8.3] with x = 7/2, we have a non-zero m,-eigenvector of A
that is a linear combination of " and 7". Lemma 2.2 shows if ("* would not
belong to A, then we would have three linearly independent 7,-eigenvectors £”,

which is the one defined in the preceding paragraph of Lemma 2.7, n™ and 7"
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by Lemma 2.2, 2.7. This is a contradiction. Hence there are two possibilities for
Ta-eigenvectors, that is, either (™" or ("™~ belong to A. If ("~ does, we are done
by Lemma 2.10.

Suppose on the contrary that (""" belongs to A. Using the Clebsh-Gordan co-
efficients, we see €(W,,_1/2(¢"™", (") _nt1/2) # 0, and ¥,,_q 5(¢™, (™) is a non-
zero m,_1/p-eigenvector affiliated with C (SELO) because the m,_; ,-multiplicity of
A equals 1, and the m,_y j5-eigenspace coincides with that of C(S? ).

Now we use the map pg := pyo.r/2 defined in [T, p.68]. Then it is easy to see
that pg(2) = 1®x for all z € C(S? 3). However, using [T, Lemma 8.4, we obtain
P (¢ 1) = (cos(m —n)f —isin(m —n)fos) @ T for any r € I, s € I,,.
Thus pg(V,—1/2(¢™F, (")) # 1@ U, 2(¢™, (™), which is a contradiction.

(2). Note that a right coideal of type A3, | exists by Lemma 2.10, and so really
does a right coideal of type A, ., by [T, Proposition 4.22]. We can check
that the 7 -multiplicity equals 1, 7, -multiplicity 0 for v = 1/2,3/2,...,m—1 and
the m,,-multiplicity 2 from the A} -graph. Hence A must contain C*(n™,n™) or
C(T4,,\SU_1(2)) up to conjugation by S* from the discussion of [T, p.66-67].

The intertwining matrix argument of [T, p.64], which has not worked correctly
there because that A, ,, generates a right coideal of type not Dy but Al 1, shows
we do not have any equivariant embedding of a right coideal B of type Ts,, into
A. Indeed, if A is a 2m x 2m matrix with non-negative integers such that a
column of A is of the form *(0,...,0,1,0,...,0) and AMPZ(m;2) = M*(m2)A,
then A must be a permutation unitary because the symmetric matrices M4 (my 5)
and MP” (7 2) have the common Perron-Frobenius vector /(1,1,...,1). However,
Tr(MA(m12)) = 2 and Tr(MP”(m1/2)) = 0, and this is a contradiction.

This argument also implies that A,,,, = C*(n™,7™) C A and A,,,, is not
of type Ty,,. The only possible type of A, is A;, for some 3 < r < oo and
s < (r+1)/2. It is easy to deduce r = 2m = f and s = (/2 + 1/2 = k. O

2.4. T, (n even, odd) case.

Theorem 2.12. Let n € N. Then any right coideal of type T,, is conjugate to
C(T,\SU_1(2)) by B~.

Proof. If n is even, there is nothing to prove. Suppose n is odd. By the argument
in [T, p.67], such aright coideal must be C'(T,,\SU_1(2)) or contain C*(n™/2, 7™/?).
We have seen the latter one is of type A:%(n +1)/2 and its spectral pattern is same
as that of C(T,,\SU_1(2)). Hence we are done. O

The discussion about type D,, (odd n > 3) [T, p.73-79] works correctly. The
following result is a correction of [T, Theorem 8.1].

Theorem 2.13. One has the following:
(1) For C(SU_1(2)), all graphs listed in [T, p.79-82] can appear;
(2) A right coideal not of type D,, (odd n > 3) or type A, (3 < £ < o0) is a
quotient by a closed subgroup of SU_1(2);
(3) A right coideal of type D,, (odd n > 3) is conjugated to C(D,\SU_1(2)) or
C*(nz) by BE. (They are SU_,(2)-isomorphic by [T, Proposition 8.11].)
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(4) A right coideal of type AL, (k > 1) is conjugate to C*(¢*~1/*F) by BL;
(5) A right coideal of type Ay, (3 < £ < oo) with 1 < k < (04 1)/2 is
conjugate to C*(F=1/2+ (k127 by gl

The spectral patterns of type Ay, are described as follows.

oAy, 3l < oo, k< L/2):

) <1+2[ Dm@ & < [ }+1+5>7rk,1/2+,,,

r€l>o r€l>o

oAl 441y (3 <0< 00, 0dd 0):

G}(l+2[}>mﬂéﬂe {%+%+1]%Hﬂ,

TGZZO T€Z>0

where

5 — 0 ifr—{r/lf]<l—2k+1,
|1 it =t > 00— 2k +1.

REFERENCES
[T] R. Tomatsu, Compact quantum ergodic systems, J. Funct. Anal. 254 (2008), no. 1, 1-83.

DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY, HOKKAIDO, 060-0810,
JAPAN
E-mail address: tomatsu@math.sci.hokudai.ac.jp



