
ERRATA: COMPACT QUANTUM ERGODIC SYSTEMS

REIJI TOMATSU

When −1 ≤ q < 0, our classification lists of right coideals of C(SUq(2)) [T,
p.2, Theorem 7.1, 8.1] are incorrect. Several results have to be corrected.

1. Correction of [T, Section 7]

1.1. A′
∞, D1, A

′
n case. A critical error is the discussion of [T, p.64]. Recall a right

coideal C∗(a, b) introduced in [T, p.62], where a :=
√
q0x+ v and b :=

√
q0u+ y

with q0 := −q > 0. We labelled it by D1, but correctly, it is of type A′
∞.

Theorem 1.1. Let −1 ≤ q < 0. A right coideal corresponding to the 1st vertex
of the A′

∞-graph in [T, p.82, Fig.15.] is conjugate to C∗(a, b) by βL.

Proof. Let A := C∗(a, b). Then A is linearly spanned by akbℓ with k, ℓ non-
negative integers. Using Uq(su(2))’s action, we can show that the space of highest
weight vectors for each half spin is one-dimensional. This is only the case when
A corresponds to the vertex with a loop in the A′

∞-graph. Their uniqueness up
to the conjugation by βL is discussed in [T, p.62]. □

So, we must again study whether D1 and A′
n types are allowed or not.

Lemma 1.2. Let −1 < q < 0. A right coideal with π1/2-multiplicity 1 is conjugate
to C∗(a, b) by βL. In particular, types D1 and A′

n (3 ≤ n < ∞) do not appear.

Proof. Let A be such a right coideal. We may and do assume that C∗(a, b) ⊂ A
using βL. Recall the product map Ψ defined in [T, p.34]. By direct computation,
we can show the following claim.

Claim 1. Let ν ∈ (1/2)Z+ and η :=
∑

t∈Iν dtw
ν
t . Then Ψν−1/2((a, b), η) = 0 if

and only if dt satisfies the following recurrence formula:

(−1)ν−t q
ν−t+1/2
0

√
1− q

2(ν+t+1)
0 dt+1 =

√
1− q

2(ν−t)
0 dt t ∈ Iν .

Its exact solution is given by the following:

dt := (−1)(ν+t)(5ν+t−1)/2 q
(ν+t)(−3ν+t−2)/2
0

[
2ν

ν + t

]1/2
q2

d−ν .

On the conjugation of η, we have Tη =
∑

t∈Iν etw
ν
t and et = (−1)(6ν−1)tq

(2ν+1)t
0 dt.

For n ∈ N, we have

an =
∑
t∈Iν

fn
t w(π(n/2))t,−n/2, fn

t := q
−t/2+n/4
0

[
n

t+ n/2

]
q

[
n

t+ n/2

]−1/2

q2
,

Thus we have three linearly independent πν-eigenvectors η, Tη and
∑

t∈Iν f
2ν
t wν

t .
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Now assume that A is of type D1. Then its spectral pattern is like:

π0 ⊕ π1/2 ⊕ π1 ⊕ 2π3/2 ⊕ · · · . (1.1)

Applying the above claim to ν = 3/2, we get a contradiction.
If A is a right coideal corresponding to the end vertex of the A′

n-graph with
3 ≤ n < ∞, then its spectral pattern corresponding to the end vertex is like:

π0 ⊕ π1 ⊕ · · · ⊕ π1/2 ⊕ π3/2 ⊕ · · · ⊕ πn−3/2 ⊕ 2πn−1/2 ⊕ 3πn · · · . (1.2)

So, putting ν = n− 1/2 in the above, we get a contradiction again. □
By [T, Proposition 4.22], there really exists a right coideal corresponding to

each vertex in the A′
∞-graph in [T, p.82 Fig.15]. In this note, we will say that a

right coideal is of type A′
n,k when it is of type A′

n and corresponding to the k-th
vertex, which is verified by computing the spectral multiplicities.

Set m := k − 1/2 and define the following πm-eigenvector:

ζm,+ =
∑
t∈Im

q
−(m+t)(2m−2t+1)/2
0 (im−t + i(−i)m−t)

[
2m

m− t

]1/2
q2

wm
t .

Theorem 1.3. A right coideal of type A′
∞,k is conjugate to C∗(ζk−1/2,+) by βL.

Proof. Let A be such a right coideal. Then its spectral pattern is:⊕
ℓ∈Z≥0

πℓ ⊕
⊕
ℓ∈Z≥0

πk−1/2+ℓ. (1.3)

Put m := k − 1/2. Since the π-multiplicity of A equals 1, we may assume that
ξ1λ belongs to A by using βL, where ξ1λ is the π1-eigenvector defined in [T, p.55].
Then a πm-eigenvector of A, η :=

∑
t∈Im dtw

m
t satisfies the recurrence formula

given in [T, Lemma 7.4]. Then as in the discussion given in [T, p.54], we can
deduce 0 < λ0 ≤ 1.

When 0 < λ0 < 1, we can solve the equation by using Tη as in [T, p.57]. Indeed
its (unique) solution is λ0 = (q−n

0 − qn0 )(q
−n−1
0 + qn+1

0 )−1/2(q−n+1
0 + qn−1

0 )−1/2, and
η is a scalar multiple of ζm,+. Hence B := C∗(ζm,+) ⊂ A. Comparing (1.3) with
other spectral patterns, we see B must be of type A′

∞,k, and A = B.
Next suppose that λ0 = 1. Then η = αwm

−m + βwm
m for some α, β ∈ C.

Since the πm-eigenvector space is one-dimensional, we can deduce that ηm =

q
m/2
0 wm

−m + q
−m/2
0 wm

m by using Tηm and a conjugation by βL. Then (ηm−m)
2 =

(q
m/2
0 x2m + q

−m/2
0 v2m)2 = qm0 x

4m + (1 − q4m
2

0 )x2mv2m + qm0 v
4m that is linearly

independent from (w1
0)

2m = (1 + q20)
m(xv)2m. This contradicts (1.3) at πm. □

The discussion about the types Tn, Dn (odd n ≥ 3) in [T, p.56–59] is correctly
working. The following result corrects [T, Theorem 7.1].

Theorem 1.4. Let −1 < q < 0. Then the possible types of right coideals of
C(SU−1(2)) are one of 1,Tn (n ≥ 2),T, SU(2), D∗

∞ and A′
∞,k (k ≥ 1) listed in [T,

p.79–82]. A right coideal of type T is one of the quantum spheres. Otherwise,
they are unique up to conjugation by βL. In particular, a type A′

∞,k right coideal

is conjugate to C∗(ζk−1/2,+) by βL.
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2. Correction of [T, Section 8]

We next study when q = −1.

2.1. D1 case. Theorem 1.1 shows a := x + v and b := u + y generate a right
coideal of type A′

∞,1.

Theorem 2.1. Let A ⊂ C(SU−1(2)) be a right coideal of type D1. Then A is
equal to C∗(a, b, ζ3/2) up to conjugation by βL, where

ζ3/2 = w
3/2
−3/2 −

√
3w

3/2
−1/2 −

√
3w

3/2
1/2 +w

3/2
3/2.

This algebra indeed coincides with C(D1\SU−1(2))

Proof. Note that such A really exists because of the existence of the subgroup D1

of SU−1(2). By (1.1), the linear operator Ψ1/2((a, b), ·) from the π3/2-eigenvector
space of A into the π1/2-eigenvector space of A has one-dimensional kernel that

is spanned by ζ3/2 by Claim 1 in Lemma 1.2 with q0 = 1. So, A must contain
B := C∗(a, b, ζ3/2) that is never of type A′

n by (1.2) and 3 ≤ n ≤ ∞. Hence B is
of type D1 and A = B.

Next we check that B = C(D1\SU−1(2)). Let D1 := {e, g} ∼= Z2. We use the
following embedding D1 into SU−1(2): x(g) = 0 = y(g), u(g) = 1 = v(g). It is

straightforward to check that a, b, ζ
3/2
t are belonging to C(D1\SU−1(2)). □

2.2. A′
∞ case. Let A be a right coideal of type A′

∞,k. Applying the discussion
preceding [T, Lemma 8.3] tom := k−1/2 (see (1.3)), we can show a π1-eigenvector
is obtained by w1

0 or ξ π/2,π/2 := w1
−1 + w1

1 though its definition here is slightly
different from the one in [T, Lemma 8.2]. Ifw1

0 belongs to A, a πm-eigenvector is a
linear combination of wm

−m and wm
m. By using βL and the conjugation T , we may

assume that wm
−m +wm

m belongs to A, but C∗(wm
−m +wm

m) is C(D2m\SU−1(2))

(see [T, p.75]), and this is a contradiction. Hence ξ π/2,π/2 belongs to A, and by
[T, Lemma 8.3] with χ = π/2, a πm-eigenvector is a linear combination of

ηm :=
∑
t∈Im

im−t

[
2m

m− t

]1/2
wm

t , η̂m :=
∑
t∈Im

(−i)m−t

[
2m

m− t

]1/2
wm

t .

By direct computation, we have the following lemma.

Lemma 2.2. One has

Ψm(ξ
π/2,π/2, ηm) =

√
2iη̂m, Ψm(ξ

π/2,π/2, η̂m) = −
√
2iηm.

Hence to get the multiplicity 1 at the spin m, the eigenvector must be a scalar
multiple of ηm ± iη̂m. Let us prepare the following vectors:

ζν,+ := ην + iη̂ν , ζν,− := ην − iη̂ν , ν ∈ (1/2)Z≥0.

Then we can prove the following lemmas.

Lemma 2.3. For all ν ∈ (1/2)Z≥0, one has βL
i (ζ

ν,±) = ±i−2ν+1ζν,∓.
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Lemma 2.4. One has

Tζν,± =

{
i−2νζν,∓ if ν ∈ Z≥0,

i−2νζν,± if ν ∈ 1/2 + Z≥0.

Lemma 2.5. For all ν ∈ (1/2)Z≥1, one has

Ψν−1/2((a, b), ζ
ν,−) = 0, Ψν+1/2((a, b), ζ

ν,−) = −iζν+1/2,+.

Denote by X±
ν the linear span of ζν,±t for all t ∈ Iν . The above lemmas imply

that the following useful formulae:

(X±
ν )

∗ =

{
X∓

ν if ν ∈ Z≥0,

X±
ν if ν ∈ 1/2 + Z≥0,

(2.1)

βL
i (X

±
ν ) = X∓

ν , X+
1/2X

−
ν = X+

ν+1/2 for all ν ∈ (1/2)Z≥0. (2.2)

Also we have ζν,+−ν = i(x+ v)ζ
ν−1/2,−
−ν+1/2 , and by Lemma 2.5,

ζν,+−ν =

{
i2ν(1− i)[(x+ v)(x− v)]ν if ν ∈ Z≥0,

i2ν(1− i)[(x+ v)(x− v)]ν−1/2(x+ v) if ν ∈ 1/2 + Z≥0

(2.3)

Theorem 2.6. The right coideal of type A′
∞,k is conjugate to C∗(ζk−1/2,+) by βL.

Proof. Let A be a right coideal of type A′
∞,k, which really exists. By Lemma

2.3, we may assume A contains C∗(ζk−1/2,+). Then C∗(ζk−1/2,+) must be of type
A′

∞,k, and A = C∗(ζk−1/2,+). □

Fixm ∈ 1/2+Z≥0. For ν ∈ 1/2+Z≥0, we will introduce the πν-eigenvector ξ
ν,±

whose highest weight vector ξν,±−ν equals (x2 + v2)ν−mζm,±
−m . Note that ξν,± belong

to C∗(ζm,±) and they densely span it for ν ≥ m. Recall ξ π/2,π/2 = w1
−1 +w1

1 in
what follows.

Lemma 2.7. For any ℓ ∈ Z≥1, one has a non-zero c±m,ℓ ∈ C such that

Ψm+ℓ−1(ξ
π/2,π/2, ξm+ℓ,±) = c±m,ℓξ

m+ℓ−1,±.

Proof. By Lemma 2.3, it suffices to show the statement for ξm+ℓ,+. Suppose that
we would have Ψm+ℓ−1(ξ

π/2,π/2, ξm+ℓ,+) = 0 for some ℓ ≥ 1. Set ν := m + ℓ.
Then ξν is a linear combination of ην and η̂ν by [T, Lemma 8.3]. Since ξ π/2,π/2

and ξν belong to C∗(ζm,+) and its πν-multiplicity equals 1, we see ξν = cζν,+

or ξν = cζν,− for some c ∈ C by Lemma 2.2. If ξν = cζν,+, by using (2.3) and
changing c, we have

(x2 + v2)ℓ[(x+ v)(x− v)]m−1/2(x+ v) = c[(x+ v)(x− v)]ν−1/2(x+ v).

Applying the counit, we get c = 1. Put r := m − 1/2. Multiplying x + v from
the right, we get

(x2 + v2)ℓ+1 · [(x+ v)(x− v)]r = (x2 + v2)[(x+ v)(x− v)]r+ℓ.
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Using the map υg defined in [T, p.31] with g = r23(θ), we obtain

υg(x
2 + v2) = cos 2θ, υg((x+ v)(x− v)) = 1− sin θσ3 =

(
1− sin θ 0

0 1 + sin θ

)
.

Hence the above equality shows cosℓ+1(2θ)(1 − sin θ)r = cos 2θ(1 − sin θ)r+ℓ. If
we put θ = 3π/2, we get (−1)ℓ+1 = −2ℓ, that is, ℓ = 0. This is a contradiction.

If ξν = cζν,−, by Lemma 2.3, (2.3) and changing c, then we have

(x2 + v2)ℓ[(x+ v)(x− v)]r(x+ v) = c[(x− v)(x+ v)]r+ℓ(x− v).

Hence c = 1, and multiplying x+ v from the right, we have

(x2 + v2)ℓ+1[(x+ v)(x− v)]r = [(x− v)(x+ v)]r+ℓ+1.

Since υg((x− v)(x+ v)) = 1 + sin θσ3, we get cosℓ+1(2θ)(1− sin θ)r = cos 2θ(1 +
sin θ)r+ℓ+1. Put θ = 3π/2 and we get (−1)ℓ+12r = 0, a contradiction.

Hence Ψm+ℓ−1(ξ
π/2,π/2, ξm+ℓ,+) is a non-zero πm+ℓ−1-eigenvector of C∗(ζm,+).

Since its πm+ℓ−1-eigenvector space is one-dimensional, that is a scalar multiple of
ξm+ℓ−1,+. □

2.3. A′
ℓ (ℓ ≥ 3) case.

Lemma 2.8. One has the following statements:

(1) If k ∈ 1/2 + Z≥0 and ℓ ∈ (1/2)Z≥0, then X+
k X

−
ℓ = X+

k+ℓ;
(2) If k ∈ 1/2 + Z≥0 and ℓ ∈ Z≥0, then X+

ℓ X
+
k = X+

k+ℓ and X−
ℓ X

−
k = X−

k+ℓ.

Proof. (1). By (2.1), we have

X+
k = X+

1/2X
−
k−1/2 = X+

1/2βi(X
+
k−1/2) = X+

1/2βi(X
+
1/2X

−
k−1) = X+

1/2βi(X
+
1/2)X

+
k−1.

This implies X+
k = (X+

1/2βi(X
+
1/2))

k−1/2X+
1/2. Hence

X+
k X

−
ℓ = (X+

1/2βi(X
+
1/2))

k−1/2X+
1/2X

−
ℓ = (X+

1/2βi(X
+
1/2))

k−1/2X+
ℓ+1/2

= (X+
1/2βi(X

+
1/2))

k−3/2X+
1/2βi(X

+
1/2X

−
ℓ+1/2)

= (X+
1/2βi(X

+
1/2))

k−3/2X+
1/2βi(X

+
ℓ+1)

= (X+
1/2βi(X

+
1/2))

k−3/2X+
1/2X

−
ℓ+1

= (X+
1/2βi(X

+
1/2))

k−3/2X+
ℓ+3/2.

We can inductively show that this equals to X+
k+ℓ.

(2). Use (2.1) and (2.2). □

Lemma 2.9. Let m,n ∈ 1/2+Z≥0 and m ≤ n. One has the following equalities:

(1) (X+
mX

−
n )

ℓX+
m = X+

ℓ(m+n)+m;

(2) (X+
mX

−
n )

ℓ = X+
ℓ(m+n). In particular, (X+

m+n)
ℓ = X+

ℓ(m+n);

(3) (X−
n X

+
m)

ℓX−
n = X−

ℓ(m+n)+n;

(4) (X−
n X

+
m)

ℓ = X−
ℓ(m+n).
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Proof. (1). The previous lemma implies (X+
mX

−
n )

ℓX+
m = (X+

m+n)
ℓX+

m and
X+

m+nX
+
m = X+

2m+n since m+ n ∈ Z. Similarly, (X+
m+n)

ℓX+
m = X+

ℓ(m+n)+m.

(2). First, we have

X+
mX

−
n X

+
m = X+

m(X
+
mX

−
n )

∗ = X+
m(X

+
m+n)

∗ = X+
mX

−
m+n = X+

2m+n.

Since 2m+ n ∈ 1/2 + Z≥0, (X
+
mX

−
n )

2 = X+
2m+nX

−
n = X+

2(m+n).

Next if (X+
mX

−
n )

ℓ−1 = X+
(ℓ−1)(m+n), then (X+

mX
−
n )

ℓ−1X+
m = X+

(ℓ−1)(m+n)+m, and

(X+
mX

−
n )

ℓ = X+
ℓ(m+n). By induction, we are done.

(3), (4). Use (2.2) in (1) and (2). □
Set C±

m := C∗(X±
m) = C∗(ζm,±) for m ∈ (1/2)Z≥0. When m ∈ 1/2 + Z≥0, we

have shown C±
m is of type A′

∞,m+1/2 in Theorem 2.6. Thus if we putQ := C(S2
−1,0),

then C±
m = Q+QX±

m = Q+X±
mQ. It is useful to note QX±

m = X±
mQ, that is, we

can treat Q as a “coefficient algebra”” in what follows.

Lemma 2.10. Let Am,n := C∗(ζm,+, ζn,−) = C∗(X+
m, X

−
n ) for m,n ∈ 1/2 + Z≥0

and m ≤ n. If 1/2 < m < n, then Am,n is of type A′
m+n,m+1/2.

Proof. Let us first assume m ≤ n. Since X+
mX

+
m, X

−
n X

−
n ⊂ Q, Am,n is the norm

closure of

Q+
∑
ℓ∈Z≥0

Q(X+
mX

−
n )

ℓX+
m +Q(X+

mX
−
n )

ℓ +Q(X−
n X

+
m)

ℓ +Q(X−
n X

+
m)

ℓX−
n ,

which is, by the previous lemma, simply written as follows:

Q+
∑
ℓ∈Z≥0

QX+
ℓ(m+n)+m +QX+

ℓ(m+n) +QX−
ℓ(m+n) +QX−

ℓ(m+n)+n.

Hence Am,n (m ≤ n) is the norm closure of

C∗(X+
m+n, X

−
m+n) +

∑
p∈Z≥0

C+
p(m+n)+m + C−

p(m+n)+n. (2.4)

because X+
ℓ(m+n) = (X+

m+n)
ℓ by Lemma 2.9 (2). Note that (X+

m+n)
∗ = X−

m+n.

Claim 2. For p ∈ Z≥1, C
∗(X+

p , X
−
p ) contains Q, and is of type T2p.

Proof of Claim. The map υg introduced in [T, Proof of Proposition 8.11] satisfies

ρg(x
2p + v2p) =

√
2
−2p

⊗ (ηp,0−p + η̂p,0−p), ρg(x
2p − v2p) = −i

√
2
−2p

σ3 ⊗ (ηp,0−p − η̂p,0−p),

where ηp,0 and η̂p,0 are the πp-eigenvectors defined in [T, p.67]. Take a char-
acter C(σ3)

∗ → C, we obtain an SU−1(2)-isomorphism from C∗(wp
−p,w

p
p) onto

C∗(ηp,0−p, η̂
p,0
−p). Since ηp = eimπ/2βL

eiπ/4(η
p,0) and ηp = eimπ/2βL

eiπ/4(η̂
p,0), we get an

SU−1(2)-isomorphism from C∗(wp
−p,w

p
p) = C(T2p\SU−1(2)) onto C∗(X+

p , X
−
p ).

Since ρg(x
2 + v2) = 1⊗ (x2 + v2), the isomorphism maps Q onto itself. □

So, if m < n, then its spectral pattern is like:⊕
k∈Z≥0

(1 + 2[k/(m+ n)])πk ⊕
⊕

m≤k≤n−1,k∈1/2+Z≥0

πk ⊕ 2πn ⊕ · · · .
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Since m > 1/2, Am,n is not of type D1, and this corresponds to the (m+1/2)-th
vertex of the A′

m+n-graph. □
We have proved the existence of a right coideal of type A′

ℓ,k for any ℓ ≥ 3 and
k ≤ ℓ/2. However, the above C∗(ζm,+, ζn,−) when m < n does not realize a right
coideal corresponding to the middle vertex of each A′

ℓ-graph for odd ℓ ≥ 3. Let us
compute the spectral pattern of Am,m. Recall the spectral pattern of C±

p(m+n)+m

in (2.4) with m = n is given by⊕
k∈Z≥0

πk ⊕
⊕
k∈Z≥0

π(2p+1)m+k.

From (2.4), for all ν ∈ 1/2 + Z≥0 with (2p + 1)m ≤ ν < (2p + 3)m, the πν-
eigenvector space of Am,m comes from the linear span of πν-eigenvector spaces of
C±

qm for q = 1, 3, . . . , 2p+1, which are all one-dimensional. We will prove they are
linearly independent. Let us take a non-zero πν-eigenvector v

ν,±
q of C±

qm. Suppose
that we have ∑

q=1,3,...,2p+1

α+
q v

ν,+
q + α−

q v
ν,−
q = 0 (2.5)

for some α±
q ∈ C. We have proved Ψµ−1(ξ

π/2,π/2, vµ,±q ) = cq,µv
µ−1,±
q for some non-

zero cq,µ for all µ > qm in Lemma 2.7. We successively operate the linear maps
Ψµ−1(ξ

π/2,π/2, ·) with µ = ν, ν−1, . . . ,m+1, and we obtain c′α+
1 ζ

m,++c′′α−
1 ζ

m,− =
0 for some non-zero c′, c′′ ∈ C. Thus α+

1 = 0 = α−
1 . Similarly, all α±

q equal 0.
Thus the right coideal C∗(ζm,+, ζm,−) = C∗(ηm, η̂m) has the exactly same spec-

tral pattern as that of type T2m, that is,⊕
s∈Z≥0

(1 + 2[s/2m])πs ⊕
⊕
s∈Z≥0

2[(2s+ 2m+ 1)/4m]πs+1/2.

Theorem 2.11. Let A be a right coideal of type A′
ℓ,k with 3 ≤ ℓ < ∞ and

k ≤ ℓ/2 + 1/2. Then the following statements hold:

(1) If k ≤ ℓ/2, then A is conjugate to C∗(ζk−1/2,+, ζℓ−k+1/2,−) by βL;
(2) If ℓ is odd and k = ℓ/2+ 1/2, then A is conjugate to C∗(ηℓ/2, η̂ℓ/2) by βL.

Proof. (1). Put m := k−1/2 and n := ℓ−k+1/2. Since the vertex is not sitting
at the central position, the multiplicities of π1, πm are equal to 1 and that of πn

is 2. By the same discussion as that of the beginning of the subsection 2.2, a
π1-eigenvector is a scalar multiple of w1

0 or ξ π/2,π/2. If w1
0 would belong to A,

then we may assume that A has a πm-eigenvector wm
−m + wm

m. However, they
satisfy Ψm(w

1
0,w

m
±m) = ∓wm

±m, and wm
−m −wm

m also belong to A, which shows
that the πm-multiplicity is greater than 1, and this is a contradiction.

Thus the π1-eigenspace generates the Podleś sphere C(S2
−1,0) = C∗(ξ π/2,π/2),

and we may assume that the πm-eigenvector ζ
m,+ belongs to A as in the subsection

2.2. By [T, Lemma 8.3] with χ = π/2, we have a non-zero πn-eigenvector of A
that is a linear combination of ηn and η̂n. Lemma 2.2 shows if ζn,± would not
belong to A, then we would have three linearly independent πn-eigenvectors ξ

n,
which is the one defined in the preceding paragraph of Lemma 2.7, ηn and η̂n
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by Lemma 2.2, 2.7. This is a contradiction. Hence there are two possibilities for
πn-eigenvectors, that is, either ζ

n,+ or ζn,− belong to A. If ζn,− does, we are done
by Lemma 2.10.

Suppose on the contrary that ζn,+ belongs to A. Using the Clebsh-Gordan co-
efficients, we see ε(Ψn−1/2(ζ

m,+, ζn,+)−n+1/2) ̸= 0, and Ψn−1/2(ζ
m,+, ζn,+) is a non-

zero πn−1/2-eigenvector affiliated with C(S2
−1,0) because the πn−1/2-multiplicity of

A equals 1, and the πn−1/2-eigenspace coincides with that of C(S2
−1,0).

Now we use the map ρθ := ρgθ,π/2 defined in [T, p.68]. Then it is easy to see
that ρθ(x) = 1⊗x for all x ∈ C(S2

−1,0). However, using [T, Lemma 8.4], we obtain
ρθ(ζ

m,+
r ζn,+s ) = (cos(m−n)θ− i sin(m−n)θσ3)⊗ ζm,+

r ζn,+s for any r ∈ Im, s ∈ In.
Thus ρθ(Ψn−1/2(ζ

m,+, ζn,+)) ̸= 1⊗Ψn−1/2(ζ
m,+, ζn,+), which is a contradiction.

(2). Note that a right coideal of type A′
2m,1 exists by Lemma 2.10, and so really

does a right coideal of type A′
2m,m+1/2 by [T, Proposition 4.22]. We can check

that the π1-multiplicity equals 1, πν-multiplicity 0 for ν = 1/2, 3/2, . . . ,m−1 and
the πm-multiplicity 2 from the A′

2m-graph. Hence A must contain C∗(ηm, η̂m) or
C(T2m\SU−1(2)) up to conjugation by βL from the discussion of [T, p.66–67].

The intertwining matrix argument of [T, p.64], which has not worked correctly
there because that Aπ1/2

generates a right coideal of type not D1 but A
′
∞,1, shows

we do not have any equivariant embedding of a right coideal B of type T2m into
A. Indeed, if Λ is a 2m × 2m matrix with non-negative integers such that a
column of Λ is of the form t(0, . . . , 0, 1, 0, . . . , 0) and ΛMB(π1/2) = MA(π1/2)Λ,
then Λ must be a permutation unitary because the symmetric matrices MA(π1/2)
and MB(π1/2) have the common Perron-Frobenius vector t(1, 1, . . . , 1). However,
Tr(MA(π1/2)) = 2 and Tr(MB(π1/2)) = 0, and this is a contradiction.

This argument also implies that Am,m = C∗(ηm, η̂m) ⊂ A and Am,m is not
of type T2m. The only possible type of Am,m is A′

r,s for some 3 ≤ r < ∞ and
s ≤ (r + 1)/2. It is easy to deduce r = 2m = ℓ and s = ℓ/2 + 1/2 = k. □
2.4. Tn (n even, odd) case.

Theorem 2.12. Let n ∈ N. Then any right coideal of type Tn is conjugate to
C(Tn\SU−1(2)) by βL.

Proof. If n is even, there is nothing to prove. Suppose n is odd. By the argument
in [T, p.67], such a right coideal must be C(Tn\SU−1(2)) or contain C∗(ηn/2, η̂n/2).
We have seen the latter one is of type A′

n,(n+1)/2 and its spectral pattern is same

as that of C(Tn\SU−1(2)). Hence we are done. □
The discussion about type Dn (odd n ≥ 3) [T, p.73–79] works correctly. The

following result is a correction of [T, Theorem 8.1].

Theorem 2.13. One has the following:

(1) For C(SU−1(2)), all graphs listed in [T, p.79–82] can appear;
(2) A right coideal not of type Dn (odd n ≥ 3) or type A′

ℓ (3 ≤ ℓ ≤ ∞) is a
quotient by a closed subgroup of SU−1(2);

(3) A right coideal of type Dn (odd n ≥ 3) is conjugated to C(Dn\SU−1(2)) or
C∗(η

n
2 ) by βL. (They are SU−1(2)-isomorphic by [T, Proposition 8.11].)
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(4) A right coideal of type A′
∞,k (k ≥ 1) is conjugate to C∗(ζk−1/2,+) by βL;

(5) A right coideal of type A′
ℓ,k (3 ≤ ℓ ≤ ∞) with 1 ≤ k ≤ (ℓ + 1)/2 is

conjugate to C∗(ζk−1/2,+, ζℓ−k+1/2,−) by βL.

The spectral patterns of type A′
ℓ,k are described as follows.

•A′
ℓ,k (3 ≤ ℓ < ∞, k ≤ ℓ/2):⊕

r∈Z≥0

(
1 + 2

[r
ℓ

])
πr ⊕

⊕
r∈Z≥0

(
2
[r
ℓ

]
+ 1 + δr

)
πk−1/2+r,

•A′
ℓ,(ℓ+1)/2 (3 ≤ ℓ < ∞, odd ℓ):⊕

r∈Z≥0

(
1 + 2

[r
ℓ

])
πr ⊕

⊕
r∈Z≥0

2

[
2r + ℓ+ 1

2ℓ

]
πr+1/2,

where

δr =

{
0 if r − ℓ[r/ℓ] < ℓ− 2k + 1,

1 if r − ℓ[r/ℓ] ≥ ℓ− 2k + 1.

References

[T] R. Tomatsu, Compact quantum ergodic systems, J. Funct. Anal. 254 (2008), no. 1, 1–83.

Department of Mathematics, Hokkaido University, Hokkaido, 060-0810,
JAPAN

E-mail address: tomatsu@math.sci.hokudai.ac.jp

9


